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 Lecture 5.  Typical dynamic links 

A link itself stays for a mathematical model of an element, combination of 

elements or any other subpart of a system. A dynamical system can be presented as a 

combination of typical (or basic) elements having differential equations describing 

them of order not more than two. 

 

1) The Integrating Link  

 

It is described by the following equation: 
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The transfer function of the link is   
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The basic property is to remember the signal for an infinitely long period of 

time. An example of the link: an integrator without feedback. 
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    Fig. 2.3. An output coordinate of the integrating link 

In state space the link is described by the system:   , 

where  b = K/T,  1c . 

 

2) The first order Aperiodic Link (Inertial Link) 

 

 It is described by the following equation: 
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The characteristic equation is  01)(
2

TssQ ; hence  
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 . From here we can 

solve for  θout(t): 
Tt

out ect  1)( , were c1 is the constant of integration. 

The transition time for the link is equal to T)43(  , where  T  is the integration 

constant. A feedback integrator is an example. 
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Fig. 2.4.  An output coordinate of the first order aperiodic link 

In state space the link is described by the system: 
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3) The Oscillating Link (damped oscillations)  

It is described by the following equation: 
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The link characteristics: 
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a) Damping factor: 
te 
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b) Oscillation period: 
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Fig. 2.5.  An output coordinate of the oscillating link 

In state space the link is described by the system: 
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An example: RLC-circuits (active-inductance-capacitance-chain) having 

damped sinusoid output. 

Pay attention to the fact that keeping  ξ  in (2.29) in the range (0< ξ< 1) 

produces the oscillating link, keeping ξ=1  produces the aperiodic link of the second 

order (see description later in the book). ξ=0 gives us the conservative link. 

 

4) The Conservative Link (free oscillations).  

 

It is described by the following equation: 
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In state space:  
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Fig.  2.6.  An output coordinate of the conservative link   

 

An example: RLC-circuits having stable sinusoidal output with constant 

amplitude. 

The typical dynamic links presented above are of large importance in control 

theory, since they provide the way of describing dynamic systems of arbitrary 

complexity in terms of comparatively simple and well-studied building blocks. 

Having described internal structure of dynamic systems, we now will turn our 

attention to their external part, namely, typical input actions, distinguished in control 

theory. In general, they are classified into two categories: determinate and accidental 

(casual). 

 


